Organized by Center for Data Science, Zhejiang University;
Operated by Hangzhou Qizhen Exhibition Service Co.,Ltd
陈松蹊
北京大学
现任北京大学数学科学学院讲席教授、统计科学中心科学委员会主席、中国统计学会常务理事、伯努利学会科学书记。2021年当选为中国科学院院士。
主要研究方向为超高维大数据统计分析、环境统计、非参数统计方法等,在超高维假设检验方法和非参数经验似然方法方面取得丰硕成果,与合作者提出了基于U-统计量和L2范数的超高维均值向量、协方差矩阵和回归系数的假设检验方法,突破了已有检验均要求数据维数和样本量是同阶的限制,在超高维下实现了对假设检验第一类错误概率的控制。在几个重要框架下建立了经验似然的一阶Wilks定理和二阶巴特莱特调整,为经验似然成为基本的非参数统计方法做出了贡献。注重数理统计的应用,以国家大气污染防治的重大需求为出发点,从事统计学与大气环境交叉学科研究,提出了去除大气监测数据中的气象因素干扰的方法,为精准度量污染排放和评估大气治理效果提供了科学方法。
曾获教育部自然科学一等奖(2017),被选为美国科学促进会会士、美国统计学会会士、数理统计学会会士。曾任北京大学光华管理学院商务统计与经济计量系主任、北京大学统计科学中心联席创始主任、统计年刊和美国统计学会会刊编委、数理统计学会常务理事等职。
Martin Wainwright
University of California at Berkeley
Martin Wainwright is currently a professor at University of California at Berkeley, with a joint appointment between the Department of Statistics and the Department of Electrical Engineering and Computer Sciences (EECS). He received a Bachelor's degree in Mathematics from University of Waterloo, Canada, and Ph.D. degree in EECS from Massachusetts Institute of Technology (MIT). His research interests include high-dimensional statistics, information theory, statistical machine learning, and optimization theory. He has been awarded an Alfred P. Sloan Foundation Fellowship (2005), Best Paper Awards from the IEEE Signal Processing Society (2008), and IEEE Communications Society (2010); the Joint Paper Prize (2012) from IEEE Information Theory and Communication Societies; a Medallion Lectureship (2013) from the Institute of Mathematical Statistics; a Section Lecturer at the International Congress of Mathematicians (2014); and the COPSS Presidents' Award (2014) from the Joint Statistical Societies.